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_ The particle trapping phenomenon that occurs in the Whistler
---- emission process is more complex than the trapping by an

infinite wave in a homogeneous system. Because of the
inhomogeneous background magnetic field and the antiparallel __

* electron and wave velocities, electrons experience trapping for -
C only a finite length of their orbits. Successive trapping and
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etrapping mts occur, even for an infinite wave train. A
. / self-consistent theory for the emission process requires

knowledge of the orbits throughout these different phases. One
must follow the electrons for many trapping periods and
accurately track the phase so that the detrapping point can be
computed. The present report describes an asymptotic theory
that allows this to be done, basically by finding an adiabatic
invariant of the trapped electron motion. e calculation is
done by an asymptotic ordering which rela s the various small
parameters in order to bring the apprQpri to physical processes
into the expansion in a workable way. It then turns out that
this ordering corresponds very well to th relations that occur
in practice, with the numerical value of e basic expansion
parameter being about .1 . This suggest that the analytic
theory will have quite good accuracy and be useful for practical
applications.
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-ABSTRACT

The particle trapping phenomenon that occurs in the Whistler emission

*, process Is more complex than the trapping by an infinite wave in a homogen-

* eous system. Because of the inhomogeneous background magnetic field and the

antiparallel electron and wave velocities, electrons experience trapping for

only a finite length of their orbits. Successive trapping and detrapping

events occur, even for an infinite wave train. A self-consistent theory for

the emission process requires knowledge of the orbits throughout these dif-

ferent phases. One must follow the electrons for many trapping periods and

accurately track the phase so that the detrapping point can be computed.

The present report describes an asymptotic theory that allows this to be

done, basically by finding an adiabatic invariant of the trapped electron

motion. The calculation is done by an asymptotic ordering which relates

the various small parameters in order to bring the appropriate physical pro-

cesses into the expansion in a workable way. It then turns out that this

ordering corresponds very well to the relations that occur in practice, with

the numerical value of the basic expansion parameter being about .1 . This

suggests that the analytic theory will have quite good accuracy and be use-

ful for practical applications.
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I. INTRODUCTION

The report describes an asymptotic orbit calculation for high energy

electrons moving along the earth's magnetic field in the presence of a

large amplitude Whistler wave. This calculation is the necessary first

step in the development of a self-consistent non-linear theory of the

triggered emission process. An adiabatic invariant for the trapped

particle motion in found from a multiple time scale analysis of the

trajectories. This allows the orbits to be followed for many trapping

periods to keep track of the phase and to compute the detrapping point.

From this an expression for the nonlinear resonant current can be written

down to, in principal, close the WKB wave equations describing the emis-

sion and propagation characteristics.

In section II, the orbit theory is developed as an asymptotic expan-

sion to bring out the main physical characteristics. The resulting order-

ing is compared with typical experimental parameters in section III. Sec-

tion IV reviews the properties of the orbital phase space, including an

evaluation of the trapped particle separatrix.

.5 -3-
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II. ORBIT ANALYSIS

In the centered dipole approximation (see Hellivell's book Whistler

* and Related Jonospheric Phenomena, Appendix) the magnetic field strength is

given by

B =(Bo (1 + 3 sin 2 #)'/ ()

where 4 is the geomagnetic latitude and R the geocentric radius which can

be expressed as F-.

R R (2)
cos 2

-

In the region of interest about the equator, i.e. for small *,the field can

"" be expressed as

B - B( + (3)

s being the arclength along the line and L being the scale length of the

gradient. In this field the electron equations of motion in the presence

of the Whistler field are, [1]

ds =v (4)

dt

dvB
V- -V cosy 3B (5)

0 1
dt B ms

0

d (Vu ) fo!-cosy (6)
dt B k) Bo '--

n 0 sin IF + k - + n (7)

dt V, B

wo

B stands for the wave magnetic field amplitude.

-4-
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Where the electron gyrofrequency is given by

L2 0 Ma o +(8)

the magnetic moment p is defined as - v o e n(9) B

where v,, is the magnitude of the electronvelocity vector perpendicular to

the earthmagnetic field direction. The phase * of this vector has been

replaced by the relative phase Y between v and the electric field vector

of the triggering wave:

rw " kds- wdt + " (10)

In order to arrive at this set of differential equations for the behavior

of an electron we have utilized the smallness of the gyroradius compared

to the scale length of the magnetic field.

This makes P in the absence of the wave a constant of the motion.

In the presence of the wave both u and the total particle energy will

change. Adding equations (5) and (6) gives the exact expression for the

change of total kinetic energy:

1 dvW _ A (v2+1 = -v By cosy (11)--

m dt dt 2 Lk 0 B

Rigorously speaking everything on the right-hand side of equation (11),

except for o and B° , is a function of s and t . The evaluation of

vL is described by equation (6) which can be written alternatively, as

d /VVVv.- (V k Bw I V" 1 - 3B (12)
t -N 11O cost + 2-

dk Bo  B 3s

Furthermore, the phase velocity, ! , of the wave will change as a function

-k -
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of a and t and after the instability touches off B!, the wave field, will

grow in space and time.

While these changes occur on a slow time scale the angle Y will

change very rapidly for most electrons.* Since the propagation character-

istics of the waves are linear (due to cold electrons) and the wavelength

and period of oscillation are small compared to the spatial and temporal

* scales of evolution, the Whistler wave can be described by a WKB or

eikonal form,
i*e '$(s,t:),.,

E- P E(,t)e w (13)

where P is the polarization vector, E the wave amplitude and w the wave

phase. The last is determined from an integration of the ray equations

w w
-- k; - (14)
as at

Then the phase T between the wave and the particles Y becomes

Sw(st) + *(s,t) (15)

vhere the particles phase * is evolving according to the equations of motion:

Bw. (16)
a sin + Q'

0dt V. B 0

the rate of change of ' is given by

d¥F ds we w+VdY- .i~ + -w +..,
dt dt as at dt

v k - w - siny + fn (17)
3 0

0

- -
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The hmgeeous field calculation with its resonance velocity

V = - and oUllivell's experiments show that relevant wave phase velocities
k

are of the order of the parallel velocity of the group of electrons of inter-

est. Of course the plasma under consideration is trapped in the mirror magnetic 0
geometry of the earth's dipole field which lends itself to loss cone driven in-

stabilities. However, observations indicate that the medium is only weakly

unstable, linearly. This leads us to conclude that even though an inbalance

between v and v.. exists both can still be on the same order of magnitude.

Putting all of this together says that the first term on the right of equation

(7) will be of order e2 compared to the rest. And we can write

d kv - +12 + 0(e2 ) (21)
dt

This says that for certain v the particles will not change their phase rela-

tion with respect to the wave field. This occurs for velocities near the

resonant velocity

res k (22)

It is convenient to define a new variable

v, Vre s + v with 1 (23)
V11

and one can write

dv, dV dv av av dv
- -re + es re + -

dt dt dt as at dt

3V aV 3V dv
-v res res vres+(4=V rs+ re + v e___s+ (24) '""
res at as dt

-7-
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The phenomenon of trapping ts contained in equation (5) when the
2U

inhoogeue:tOMB - - Bo 0 can become sufficiently small near
a as u L2

the equator, s 0, that the wave term - go v, cos T dominates and
0

causes the electrons to oscillate about some stable phase at a frequency
w /2

r ( kv ): (18)

0

the so-called trapping frequency wtr for well trapped particles.

We now focus attention on the trapped particles, and develop an

asymptotic ordering of parameters that permits an expansion of the electron

orbits. We will show later that this ordering accurately describes the

real parameters in the observed emission process. Re-writing w in termstr
v eq

of the equatorial gyroradius p
0

a ~ ( 3wj/ (19)

0

one notes first that wtr is much smaller than Q since - is a very small
o Btr 0 B

number (in practice on the order of 10-). In practice kp is order I and

thus should remain unordered. Then we can define a smallness parameter e

as

tr- - C (20)

0

B_indicating at the s=m time that C

0

Since T is intrinsically an order one quantity we find for the region

of interest (L sufficiently small so that both terms on the right-hand side

of equation (5) can compete) d. t Note that for untrapped, nonres-t tr

onant particles the phase, Y, changes on the gyroperiod time scale and another

expansion procedure would have to be used.

• i . . .- . . .. _. . _ - : i ..+ .: . . . ... .. : .. : .+ . : .- :*- .. - - .. . • - . - . . ..- -. _ _ , , .- .



in term of tis new variable the equations of notion read

ds + v (25)
dt Vroe

dv B1 v'2 aB avres  3V
d -Vi. - -0 COST --- v (26)
dt B 2 B fs a s as k

where from the definition of Vr (27
r ret =(27"

at k

was used.

dv v n) 13
-- - cosT+ -+v)- (28)dt k B 2 B aV e  s..!

0s

dY - kv + 0(e2) (29)

dt

For trapping to occur, we must have the inhomogeneity and wave terms in equa-

tion (26) comparable. The terms on the right-hand side of this equation scale

successively like this:

B Vs v s 1l6W
V V..L . v 2 V - (30)

0 B 2  ' L2B L2  kL v k L k dt
0U

When treating a constant frequency wave train the last term - can be neglect-
k

ed since Vres is not an explicit function of time. The proportionality (30)

can be re-expressed as:

B 0 s S 1 v s
2 (31)

B LL LkL vgLkL
0

By assumption c<<l such that the last term in (31) is very small compared
Vt'

to its precessor - . 1 was used again. Also using kD -1 again it is true

that Then (31) demands essentially
L L LkL

C _ c2  (32)

L kL

-9-



Now, we also want the 8 notion to be on a slower time scale than the

bouncing in the wae crests so that a is essentially forzen (adiabatically)

while trapping motion ensues. Therefore

-- vhere 0 < a < 1 (33)i1 L
has to be determined self consistently. scales like - C r

s s kLs 

o r - - " ( 3 4 ) :

kL s (34)

From both (32) and (34) one can solve for

e 2 (35)
L

* In order to be able to treat B - B on both these scales as essentially con-
0

stant we want the first correction term _) to come in on the next slover

time scale (Ce) . Hence

2 2a
)-c €(36)

Both (35) and (36) can be solved to give

01 " 1/3 (37)

3 L

This completes the asymptotic ordering, using the small parameter e ! (Bw/B ) .
0

The fast time scale for trapped particle is w tr- on which scale s is
1/3 -1frozen. On this and the next slower time scale e W , where s motion

occurs, the magnetic field can be treated as constant. It follows from (32)

that

P 5/3
E/ (38)

L kL

-10-



and since v changes as I on the fast time scale tr : -'

V tr V tr v 2
-_ - €2. C or p

Q VV a V
0J 0

- - C (39)
ve  0

Thus the corrections to v - V res are coming in on third order in the

expansion parameter E113 and are not needed for computing the motion along

the magnetic lines. To lowest order the equations of motion for trapped--

particles become:

Ls- V + O(E) (40)

dt res No_

dv B 1 V2 3B aV
0 res

--- v- cosy -- - V - es- +0() (41) i - !

dt B 0 2 B as as k

dvA 2/
- - 0+ O( ) (42)dt '"

d'Y 2 ..

- - kv + O(e) (43)
dt

In proceeding toward a solution of this set of equations it can be

noted first that the time derivative of equation (43) becomes

d2 y dv+ dk
--2 k-+Lv (44)
dt2  dt dt

The last term in this equation scales like

k v, ,2 V 2 ,,

Comparing this to the left-hand side which scales like

- 11 -'



d2y 2 (6

t 2 t tr

* one f inds

VkCL 6-- W2 le /3C / E CWt (47)

tr

1/3
*that this term is a third order correction in e leaving

R -L+O(c) (48)
d t2  dt

Or with equation (41)

d2V B' LV 3 av
-u -k v -% 11 rcaV - *- (49)

0

One recognizes the first term on the right-hand side as the wave term,

W cost, and the others as inhomogeneity terms. We define an inhomogeneity

factor, S *according to,

W2 S (±..!.v )k (50)
tr 2 B39 res as k

* Hence, finally the i-equation takes the form

d~ 2 COST W2  s (51)
dt 2  t

There exist bounded oscillatory solutions to this equation as long as the

inhomogeneity on the right-hand aide satisfies

ISI < (52)

assuming for now that the frequency stay@ constant.

-12-
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By the utod of multiple time scales this equation can be solved

1/3
analytically for trapped particles. Expanding in powers of c

""P + + + (53)
o 1 2 12 +

s s + s +. . . (54)

d_. a+ +_. +.. (55)
dt at t t

o a1  a2

Then

d~~0 f2 1/3 af, a 2/3 / 'a22  a''
- +E + 2 - -+ +2-
dt2  ato2  \ato2  attt1  \ato2  at atI

0 0 tat 01

321f a 2v
+ 2 0 + 0 + (56)

atcat at2
0 2

and cosT (cos Po) - (If sin Po) - coS Po + sin P)+ *(57)

corrections to S will come in to third order. The stable phase P about
0

which the trapped particles oscillate does not change on the wtr time

scale

ap as
(58)

at0  at0

neither does the inhomogeneity term. Thus leading order is

W2 (cosP - S) 0 S < 1 (59)
tr 0

yielding P0 Po(S(t)) cos 1 (60)o h-"J

to next order one finds

a2
- IF, +W2  sin(-P) ' o (61)
at 2  tr

*. "'.7."

-13 -
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an oscillator equation with oscillation frequency

% Ua) isiflP) *(62)

Thus Tbecomes

1 12 01 2

where AL-(64)
0

*Since *is inherently secular on the fast time scale one has to compute

to requisite order prior to being able to evaluate *.To finddt at1

* the next equation in the expansion hierarchy in needed. It reads

a2 a2y a2p 82? i11
at 0 2 at at1  at at2  at12  2 1 0

+Ys inP . (65)
2 0

Our objective is to eliminate secularities of Y on the fast time-
-1 2? 2

scale . Based on equation (58) -i vanishes eliminating the second
at

0

term on the right-hand side of equation (65). Also the third and fifth term

cannot drive the left-hand oscillator at frequency w .The fourth term:

(coo A2 sin2 (W t + A2 ~ (Coop Ml1 cos(2w t + 01*
2 0 0 0 0

(66)

*is driving at twice the frequency wo, also dropping out of interest. It is

* then left to require that

-14.



3t~c at1 (Aw 0 sin *
1 0 1

in.(Aw.)sin + Aw -~os# (67)

w ill not drive at w 0 leading to a fast time scale secularity In Y 2 This

will be guaranteed under the following two conditions:

aAW 0 (68)
at1

and..~L-0 (69)

Therefore the combination Aw the amplitude of trapping oscillations time
0

the frequency is constant on the slow time scale. This is a rather unexpected

constant of the motion pertaining to the slow time evaluation of the trapped

* particle motion. And an additional fact is of great importance: equation (69).

which allows us to integrate # as follows

*Jdt wtr~ sin(-p(st) (70)

From the equations (40), (50), and (60) everything is known to compute

Assembling these results we found an analytic description of well trapped

* electrons.

11 P0 + Asin# (71)

* - de tr (2

With the adiabatic invariant

A -o constant (73)

-15-
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From equation (43) we find that the perturbed velocity v Is of constant

amlitude

V - COO*

s~imrizing these results the trapped particles are found to gyrate

In vortices in v -Y-space on the fast time4scale w'. * Excursions in v

are of constant amplitude. The average phase angle P0 is slowly changing

as the particles are drifting further aLong the field lines. Outside the

region of trapping ISI.Z L , the particles follow adiabatic orbits in an in- lok

homogeneous field to leading order. For simplicity an infinite wave train

of constant amplitude was considered.

-16-



III *COMPARISON WITI EXPERIMENTAL PARAM(ETERS

After heyns developed the analytic expressions for trapped electron

orbits the question arises, how do our assumptions compare with the measure-

ments? Are the expansion parameters apt to validate the calculations?

In order to check the expansion against the data given in the litera-

ture our interest will focus on a field line designated as L - 4

The L number is the multiple of earth radii (R° = 6371 km) that gives

the straight distance from the center of the earth to the equator of the

fieldline.

Granted a dipole representation of the earth magnetic field the L = 4

line originates at -0 60' latitude on the earth's surface. This corresponds

to a fieldline length of

(sinh-' (1sin 0 +(3sin.) V1 + 3 sin. 0 ) -

= 57,360 km (74) %%%

(The arc length in this form was given by Chapman and Sugiura in 1956) [2].

At and in the vicinity of the equator of the fieldline under consideration,

the magnetic field can be expressed as

B = (Bo  1 + (75)
L2

The scale length Is given by

/rL R
L = 12,013 km (76)

3

For the proposed comparison of scales one needs to compute the relevant plasma

parameters like no w pe ,V res * 0 , etc. as well as wave parameters.

17 -
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The dipole approzimation to the earth magnetic field gives an electron gyro-

frequency of f 13.65 kI at an altitude of 3 earth radii above the earth's

equator 121. This mober compares well with the more detailed analysis by

Fougere using spherical harmonics which gives fe 14 klz (3. The corres-

pooding o " 2w fe- 88000 rad/sec.

Typical observation are performed with the fieldstrength of the trigger-

ing signal lying in the range of 1 - 10 y (4. The commonly used unit of y

is defined by ly - 10 -  Teula - 10 - Gauss.

Hence:

-3w 5 x 10 x 10-5 c2

B 0 500y

This proves to be a very good expansion parameter. It is known experimentally

that the frequency, vhere triggering of emission takes place most frequently, is

half the minimum gyrofrequency [51 of electrons along the fieldline :
0

W,- 44000 rad/sec; f 7 kHz
2

liellivell's measurements of the "nose"-frequencies of risers and fallers allow

to conclude on the plasma frequency (2] which he gives as

p 7.6 x 105 rad/sec corresponding to

180 electron/cm3 . Now we are in the position to compute the wavelength based

. on the linear dispersion relation for whistler mode signals In homogeneous

magnetized plasm":
22

2 2 (77)€=1. c k =0 (77)

W2 W

- where we is the electron gyrofrequency. Plugging in the numbers k turns out

to be

- 18 -
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k- 2.5 correspondins

to a wave length A of approximately A - -w 2.5 km . We also take the
k

resonance velocity on the order of the particle velocities

V k 17,340 v o v (78)

(This is also justified by a set of model parameters in a late paper of L.A.

Hellivell and U.S. Inan [6]. From this the gyroradius p is 0.2 ki, a tenth

of the wave lenth. Then, very closely, k. appears to be an order 1 quantity.

The definition of the trapping frequency was

W2 Kp22= 200r ad
r o BoSec

To within the accuracy that ko is 1 it will be found that w /n o c . Hereto- ,

e is being defined by the square root of the ratio of the field strengths.

Next w are to compare the quantity 1L with 1 to find an upperL kL B
0

bound. We can take the length L of the particle interaction region PIR as
p

estimated by Helliwell [7]

L 800k ,p -.

or the arc length s up to which the effect of particle trapping can be found.

I.E. s for which the two terms on the right-hand side of the equation of motion

for v balance. The condition is

IS, 20OV kv Vi
jS. (79)

Lr LW2  L /
tr tr

from which follows that a can range up to 1500 km

With Hellivell's estimate we find

19-
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10-6i
iL -2.2 x1

L UL

which is amaingly Close to 1075 verifying our assumnption
B

0

sI B

L k B0

Further we set Cd - W . By definition -v, There follows
s dt trdt

I _ 21. 7-w
s dt 8 tr

For our purposes of finding analytic expressions f or the orbits, we expand. -

hene i tems f 1/3- 1. . To conclude this section we give a short Shenc in ermsof e 10

table of parameters relevant to the orbit calculations:

weq - 760,000 rad/sec L - 12,013 ka

- 88,000 rad/sec - 2.5 km
0

-44,000 rad/sec k -2.5 1/km

Wr 200 rad/sec 0 0.2 km

1075~- VI -V -V res17,440 km/s

0

1/3
- 2.2 x£ 11

a 500YL 4
0

Bw - 1-10 aY R -6,371 km

a -0-1500 ks

-20-



rv. sDARTI ANALYSIS

With the solutions to the equations of motion the wave-particle problem

has been solved on a microscopic level. We found that the individual electron

executes an orbit which is parametrized by two quantitites A and ;. A is the

amplitude of trapping oscillation in Y and * the initial phase on this orbit,

as it appears in the integration of * (eq. 70).

Giving a pair of these parameters allows one to integrate the orbit back

or forward to the entrapping or detrapping point. These points are determined

by the intersection of the separatrix in v - T - space with the Individual

orbit. Exterior to those two points the electrons follow adiabatic orbits in

the geomagnetic field to lowest order.

At exactly the equator, S - 0 , the medium appears homogeneous and the

phase space picture is as shown in Figure 1.

-21-
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Figure 1.
Trajectories of cyclotron resonant electrons in the v-Y plane at the equator,
S-0, or for the case of a homogeneous medium. The open-ended lines correspond
to untrapped particles while the closed trajectories represent trapped particles.
The separatrix is labeled by a-i

Clearly the closed line orbits of trapped electrons are separated from

the open-ended lines for v greater than r2 !-t
k

The equation for these orbit paths is

1k2v2  (82)
-- + sin WI a

2 
2

tr

Each path is labeled by a different constant of integration, a, of the first

(energy) integral on the right-hand side of equation (82). For this constant

being equal to 1 corresponds to the equation for the separatrix.

Away from the equator, the equation for the orbits is

1 k.\-a + SY sinY (83)

2o

2 tr

-22
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Bounded orbits appear f Or 0 ~ S I 1 .Again the choice for the constant

of integratIM, ag speciies each trajectory. A number of them art depicted

ilk Figure 2. for 5 0.5.

46--

--.

Figure 2.
Trajectories of cyclotron resonant electrons in the v-1V plane f or S-0.5
The separatrix of the closed trajectories about P0 for -W/2 <P <0 would
be parametrized by a se-0.342

The constant of integration, aand Its functional dependence on S can

be found graphically and analytically after setting v 0 .This corresponds

to the intersections of the contour lines with the 'V-axis. The intersection

values of T, are the solutions to the transcendental equation

a + SY sinY (84)

The straight line with slope S on the left equals the sine function on the

right for several y's depending on the choice of a *This is illustrated by

Figure 3.
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Figure 3.
Graphical determination of the constant of integration for the separatrix
and its width in ' . See text for details.

Since T is the angle between v and the electric field vector of the

wave it is sufficient to look at one interval of width 2nr on the T axis.

For 0 < S < 1 there will be maximally 3 intersections for small a's, two -

of which define the width in T of the corresponding trapped particle orbit,

the third one belongs to an open trajectory. The condition for the separa-

trix is that the open trajectory and the closed trajectory just touch. This

happens for a2 where the straight line a2 + ST becomes tangential to sin TV

(see Figure 3). The value TR where this happens is

IF cos-S (85)
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vlth 0 --IV -< w/2 for S > 0 The analog holds for S < 0. The value of

a correspond/as to the separatrix is given by

ace S coo"S / S2 (86)

Hence, the equation for the separatrix about the trapped particle

island centered about P , with -w12 < P 0 , is

1Seas 1  (87)
I =S Cos " S 1-=S - + SV - sli 87 "T

This allows us to compute the entrapping point for nearly resonant electrons

streaming into an infinite constant amplitude triggering wave. The equation

to be evaluated is obtained by inserting

vm (A(A) ) cos( wt S d) (88)

and t= sin Wtr t)d (89)

into equation (85) and finding the root.

The. separatrix has roughly the shape of an ellipse as can be seen from

Figure 2. In order to find an analytic expression for its width in I as a

function of S it is necessary to reduce the transcendental character of the

sine-function involved in equation (84).

It was found that a good approximation for sin %L is given by

12
I -' -8-a - STL  (90)

in the interval -- < TL '- and
2 -
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,2 + a. -sYL (91). 2  L -- L "mSep --

itn the intert*1 -w L < 0 . The solution to either one of these equations

gives the left-hand intersect of the separatrix contour with the Y axis. The

right-hand intersect is given by equation (85). Therefore the width of the

separatrix ATsep - 'R - TL is given by

2Sse

AY2 -c w2 +/2 8 8 (922 2 / 8 1

AT =Cos S + (92)
Sep

--- s -- s+-+
2 8 8 1

The upper expression Is valid for the interval - L - t , the lower
2

expression for - < VIL < 0 . The width in v of the separatrix Av Is given by

Av -2 Ct. r/ os - S - 71- (93)

k

So far S was treated as a positive quantity. It is straight forward to writ-

down the expressions for -1 < S < 0

Belabouring the separatrix to this extent is of importance. All of the

interior are trapped particles which represent the dominant contribution to

the resonant current density. This current in turn is responsible for the

modifications of the triggering wave, the emission. The next step to be

taken is to integrate over the resonant phase space region to compute this

current. It will be to our advantage that the wave amplitude is growing on

a slower time scale than the trapping notion.
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